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Please segment the logo on the cup in the image.

Sure, it is the logo on the cup.

Can you segment mascot, girl in white and man on 
the left in this image?
Sure, mascot and man on the left. But I don't 
see any girl in white in this image.

Sure, the image contains tree, sky, pavement, 
grass and building.

Can you segment all the objects in this image?

(b)  Referring Segmentation

(c) Multiple/Empty Segmentation

(d)  Panoptic Segmentation

(e)  Captioning & Conversation
Could you please give me a 
brief description of the 
image?

A small shop with a dragon 
on the sign.

Please provide a long 
format answer.

The image features a 
quaint, old-fashioned shop 
with a sign that reads 
"shop at the dragon" 
situated in a small town, 
surrounded by greenery and 
a brick building.

Can you segment the brick 
building?

(f)  Reasoning Segmentation

What is the child doing and what keeps his hands 
warm?
The child is playing with a dog in the snow. He 
is wearing a pair of gloves to keep his hands 
warm while enjoying the playful moment.

Sure, brick building.

Can you describe the contents of the image in a 
comprehensive format? Please respond with 
interleaved segmentation masks.

(a)  Multi-Granularity SegCap

In this image, a woman playing tennis is the 
focal point. In her hand, a black and white 
tennis racket is gripped firmly, ready to strike 
the ball in the bottom right corner. Beneath the 
woman’s poised posture, the blue tennis court 
spans the background ... In the periphery, a 
black microphone can be glimpsed. Overall, the 
image shows ... of the Olympics.

Can you provide a detailed description in a 
comprehensive format for the woman? Please 
respond with interleaved segmentation masks.

A woman playing tennis is captured in a dynamic 
pose,... Notably, the woman is wearing tennis 
wristbands on her wrists and a red Nike shorts, 
which is associated with the brand’s well known 
logo,... The woman’s tennis racket, a yellow and 
black one, ... Her athletic attire is completed 
with a white Nike hat, which contrasts with her
red shirt and the blue playing area.

Figure 1: MGLMM is a versatile and sophisticated LMM, which can handle various tasks involving textual and pixel-level mask responses.
We show its visualization results in the following scenarios: multi-granularity segmentation and captioning, referring segmentation, multi-
ple/empty segmentation, panoptic segmentation, reasoning segmentation, image-level captioning, and conversation.

Abstract

Large Multimodal Models (LMMs) have achieved signifi-
cant progress by extending large language models. Building
on this progress, the latest developments in LMMs demon-
strate the ability to generate dense pixel-wise segmentation
through the integration of segmentation models. Despite the
innovations, the textual responses and segmentation masks
of existing works remain at the instance level, showing lim-
ited ability to perform fine-grained understanding and seg-
mentation even provided with detailed textual cues. To over-
come this limitation, we introduce a Multi-Granularity Large
Multimodal Model (MGLMM), which is capable of seam-
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lessly adjusting the granularity of Segmentation and Caption-
ing (SegCap) following user instructions, from panoptic Seg-
Cap to fine-grained SegCap. We name such a new task Multi-
Granularity Segmentation and Captioning (MGSC). Observ-
ing the lack of a benchmark for model training and evalu-
ation over the MGSC task, we establish a benchmark with
aligned masks and captions in multi-granularity using our
customized automated annotation pipeline. This benchmark
comprises 10K images and more than 30K image-question
pairs. We will release our dataset along with the implemen-
tation of our automated dataset annotation pipeline for fur-
ther research. Besides, we propose a novel unified SegCap
data format to unify heterogeneous segmentation datasets;
it effectively facilitates learning to associate object concepts
with visual features during multi-task training. Extensive ex-
periments demonstrate that our MGLMM excels at tackling



more than eight downstream tasks and achieves state-of-the-
art performance in MGSC, GCG, image captioning, referring
segmentation, multiple and empty segmentation, and reason-
ing segmentation tasks. The great performance and versatil-
ity of MGLMM underscore its potential impact on advanc-
ing multimodal research. Code and dataset will be released at
https://github.com/lizhou-cs/mglmm.

Introduction
Leveraging the commonsense reasoning and understand-
ing abilities of Large Language Models (LLMs) (Chiang
et al. 2023; Touvron et al. 2023), Large Multimodal Mod-
els (LMMs) (Zhu et al. 2023; Alayrac et al. 2022; Bai
et al. 2023; Liu et al. 2024a) have notably advanced cross-
modality understanding and vision-language alignment.

Recently, several studies (Lai et al. 2024; Xia et al.
2024) have explored the instruction-based LMMs capable
of producing pixel-level segmentation masks as responses to
user queries. More recent researches (Rasheed et al. 2024;
Zhang et al. 2024a) concentrated on Grounded Conversa-
tion Generation (GCG) which aims to ground the main ob-
jects appearing in the conversations. Although these meth-
ods (Zhang et al. 2024a; Lai et al. 2024; Xia et al. 2024;
Ren et al. 2024) integrate a powerful segmentation model
capable of panoptic segmentation, they still have difficulty
generating mask-text-aligned responses for all the instances
in the image, resulting in limited panoptic segmentation per-
formance. Figure 2 (a) shows such a case where GLaMM
overlooks the tennis racket, tennis ball and microphone in
both mask and text responses. Besides, these models only
possess the ability to describe the image at the instance level
and produce corresponding instance masks aligned with the
output texts. Hence, these models can hardly perceive the
fine-grained objects, such as the hat, wristband, and skirt of
the player in Figure 2 (b), even provided with detailed tex-
tual cues. The missing of the above abilities would limit the
universality and comprehension of the LMMs.

To overcome these limitations, we introduce the Multi-
Granularity LMM (MGLMM), which is capable of seam-
lessly adjusting the granularity of Segmentation and Cap-
tioning (SegCap) following user instructions, from panop-
tic SegCap to fine-grained SegCap. To be specific, for the
query requiring describing the overall contents of an im-
age, MGLMM outputs the precise panoptic segmentation
masks with captions, offering a coarse-grained understand-
ing of the entire image. For the instruction demanding to
describe a certain object in the image, MGLMM can pro-
duce a detailed response including segmentation masks of
the sub-parts of the object as well as corresponding descrip-
tions, which reveal the components of the target object. We
name such a task Multi-Granularity SegCap (MGSC), which
assesses the ability of progressive cognition from coarse-
grained to fine-grained. Overall, MGLMM excels at tackling
more than eight downstream tasks such as panoptic Seg-
Cap, fine-grained SegCap, GCG, and multiple and empty
segmentation, as presented in Figure 1 and Table 1.

Observing the lack of a benchmark for training and
evaluating LMMs for the MGSC task in the community,
we establish a new benchmark, dubbed MGSCData, with

(a) Response: A woman in a red dress is 
playing tennis on a blue court.

(b)  Response: [SEG]. (A query requiring 
detailed descriptions for the player is given.)

(d)  Response: refer to Fig.1 (a) for details.(c)  Response: refer to Fig.1 (a) for details.
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Figure 2: Qualitative comparison of GLaMM and our
MGLMM. Please refer to Appendix. A for more details.

aligned masks and captions in multi-granularity using the
customized automated annotation pipeline. It consists of
10K images and over 30K image-question pairs, encompass-
ing both panoptic and fine-grained segmentation. To be more
specific, the dataset includes more than 300K segmentation
masks, each annotated with a semantic label and an accom-
panying detailed description. MGSCData effectively facili-
tates the training and assessment of the ability to associate
object concepts and visual features in multi-granularity. We
will release MGSCData and expect it to benefit academia.

Besides the benchmark, another key challenge in unify-
ing segmentation tasks across granularities lies in the sig-
nificant variation in both the format and semantic level of
the queries and outputs. Typically, existing studies directly
incorporate the heterogeneous data of different tasks into
model training, overlooking the task discrepancies and com-
plicating multimodal alignment further. To handle this issue,
we propose a Unified SegCap Data Format (USCDF) to ex-
plicitly guide the model in learning the alignment relation-
ships between object concepts and segmentation masks in
different granularities during training. Specifically, USCDF
unifies the output formats of different segmentation tasks,
bridging the gap between them and reducing the difficulty
of multi-task learning for the model. The right part of Fig-
ure 3 illustrates the instantiation of the unified data format
on tasks including multi-referring reasoning, panoptic Seg-
Cap, and fine-grained SegCap. Experimental results demon-
strate that USCDF benefits multi-task learning and vision-
language learning. We also evaluate MGLMM across a va-
riety of benchmarks. The experiments demonstrate that it
achieves state-of-the-art results on six benchmarks.

In conclusion, our work has four main contributions:
• We propose MGLMM, the first model capable of seam-

lessly switching between multi-granularity segmentation
and captioning, especially including panoptic and fine-
grained segmentation and captioning.

• We introduce a novel benchmark MGSCData to train and
evaluate the ability of multi-granularity segmentation and
captioning for LMMs, which comprises over 30K high-

https://github.com/lizhou-cs/mglmm


quality image-question pairs.
• We propose a unified data format, which facilitates learn-

ing the alignment relationships between object concepts
and segmentation masks in multiple granularities.

• We achieve state-of-the-art performance across various
tasks, including MGSC, GCG, image captioning, various
segmentation tasks, etc.

Related Work
Recently, there has been an increasing focus on fine-tuning
pre-trained LLMs for visual instructions. These approaches,
including BLIP-2 (Li et al. 2023), InstructBLIP (Dai et al.
2023), LLaVA (Liu et al. 2024b), MiniGPT-4 (Zhu et al.
2023), Qwen-VL (Bai et al. 2023), typically employ a pre-
trained visual encoder to embedding visual input, utilize an
LLM as the base model to comprehend user instructions and
generate textual responses, and include an adapter to bridge
the features of the vision encoder with those of the language
model. The integration of visual and linguistic modalities
within LLMs aims to enhance their capacity to understand
and respond to complex, visually guided tasks. Although
these methods have significantly facilitated the development
of multimodal language models, their mechanisms fail to
achieve pixel-level alignment and a comprehensive under-
standing of both images and language.

Furthermore, several works, including (Lai et al. 2024;
Ren et al. 2024; Rasheed et al. 2024; Zhang et al. 2024a), ex-
plore more complex tasks driven by instructions, involving
segmentation or captioning as responses to achieve effec-
tive pixel-level alignment of images and text. Although these
methods perform well in various segmentation tasks, they
are limited to learning only instance-level vision-language
alignment, preventing them from perceiving fine-grained ob-
jects. Furthermore, all these methods integrate a mask de-
coder capable of panoptic segmentation into their methods
but fail to generate coherent mask-text-align responses, re-
sulting in suboptimal performance.

For the reasons mentioned above, our goal is to develop
an LMM that can seamlessly perform panoptic and fine-
grained segmentation and captioning based on user instruc-
tions. Further, we establish a high-quality benchmark called
MGSC that fills the gap for panoptic and fine-grained seg-
mentation and captioning and introduce our automated an-
notation pipeline. Last, we propose a unified data format that
facilitates explicit learning of alignment relationships be-
tween object concepts and segmentation masks. MGLMM
achieves state-of-the-art performances on over six tasks and
ablation results also prove the effectiveness of our methods.

Method
In this section, we introduce the model architecture of our
MGLMM, as illustrated in Figure 3. We then introduce the
unified SegCap data format used during training.

Model Architecture
To achieve multi-granularity segmentation and captioning,
we utilize two foundational models to construct our model:

(1) an LMM for comprehending input images and user in-
structions and generating natural language responses, and
(2) a segmentation model based on an encoder-decoder ar-
chitecture for pixel-level visual understanding.
Large Multimodal Model. Considering the simplicity and
consistency with previous works (Lai et al. 2024; Rasheed
et al. 2024), LLaVA emerges as our preferred choice. Specif-
ically, we employ the CLIP model as the vision encoder, de-
noted as Fv , in conjunction with the Vicuna-7B model as a
decoder-based LLM, denoted as Fllm. As illustrated in Fig-
ure. 3, the vision encoder is responsible for extracting visual
features from the input image ximg , after which a projec-
tor ϕ is applied to map the extracted image features into the
word embedding space of Fllm. Formally:

zimg = ϕ(Fv(ximg)). (1)

It is worth noting that the projector ϕ plays a crucial role in
aligning image features with the linguistic modality. Specif-
ically, it consists of two linear layers with a GELU non-
linearity and is initialized randomly. Meanwhile, the text in-
put is encoded into text tokens by the tokenizer T of Fllm.
Subsequently, we integrate image tokens zimg and text to-
kens ztxt, which are then fed into the Fllm to generate final
textual output ytxt, i.e.,

ŷtxt = Fllm(zimg∥ztxt). (2)

Following LISA (Lai et al. 2024), we adopt the
embedding-as-mask paradigm to bridge these two modules.
In this paradigm, the vocabulary of the model is augmented
with a specialized token ‘[SEG]’, designed to explicitly ac-
tivate the segmentation behavior of the segmentation model.
When the LMM intends to generate a segmentation mask
based on the user instruction, it inserts the ‘[SEG]’ token in
the output sequence ytxt to indicate the presence of a target
to segment. For example:

User: <IMAGE> Please segment the dog in this image.
Assistant: Sure, the segmentation result is dog [SEG].

Segmentation Model. This work employs SAM (Kirillov
et al. 2023) as our foundation segmentation architecture be-
cause of its promising pixel-level modeling capability. As
shown in Figure. 3, the pixel encoder Epixel is instantiated
using a frozen SAM encoder, while the pixel decoder Dpixel

is initialized from the pre-trained SAM decoder. The for-
mer takes the high-resolution image as input to extract fine-
grained visual information, while the latter generates the de-
sired segmentation masks prompted by the embedding of
the ‘[SEG]’ token from the LLM. Specifically, we select the
output embedding ẑseg corresponding to the ‘[SEG]’ token
ŷtxt([SEG]) and transform it into the feature space of de-
coder using a projector ψ. Notably, the structure and initial-
ization of projector ψ are identical to those of projector ϕ.
The entire process can be formulated as:

ŷmask = Dpixel(Epixel(ximg), ψ(ẑseg)). (3)



Method Textual Response Mask Response Textual & Mask Response
Caption Conversation Referring Seg Generic Seg Multiple/Empty Seg Reasoning Seg GCG MGSC

LISA (Lai et al. 2024) ✓ ✓ ✓
PixelLM (Ren et al. 2024) ✓ ✓ ✓ ✓ ✓
GSVA (Xia et al. 2024) ✓ ✓ ✓ ✓
Osprey (Yuan et al. 2024) ✓ ✓
LaSagnA (Wei et al. 2024) ✓ ✓ ✓
PSALM (Zhang et al. 2024b) ✓ ✓ ✓
OMG-LLaVa (Zhang et al. 2024a) ✓ ✓ ✓ ✓ ✓
GLaMM (Rasheed et al. 2024) ✓ ✓ ✓ ✓
MGLMM (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of the capabilities of MGLMM with multiple representative methods. Here, “Generic Seg” comprises semantic segmen-
tation, instance segmentation, and panoptic segmentation; “Reasoning Seg” requires the model to segment images based on queries involving
complex reasoning and provide the corresponding textual interpretation.
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Unified SegCap Data Format

TrainableFrozen[SEG] Tokens

A <p> man </p> [SEG] is 
riding <p> a black bicycle </p> 
[SEG] along a <p> sidewalk made 
of concrete </p> [SEG]. On his 
back, ...

<p> A man riding a bike </p> 
[SEG] is captured in the image ... 
He is wearing <p> a blue jacket
</p> [SEG] and <p> dark jeans
</p> [SEG], which shows ...

Figure 3: Left: The model architecture of MGLMM. Right: The proposed unified data format for multi-task learning.

Design of Unified SegCap Data Format

Most existing studies primarily integrate various pixel-level
segmentation capabilities into LMMs by directly extending
corresponding task datasets. For example, in referring seg-
mentation, the query may be a phrase that requires the return
of segmentation masks. Conversely, in reasoning segmenta-
tion, the query can be a longer sentence or question in which
the target may not be present, necessitating an answer along
with segmentation masks. In different segmentation tasks,
the form and semantics of queries vary. In this context, the
model must adaptively align the semantic concepts of poten-
tial targets with visual features during training, which un-
doubtedly increases the burden on model learning. There-
fore, we propose a unified SegCap data format to leverage
these data, explicitly guiding the model toward improved
vision-language alignment. In this manner, we unify the out-
put formats of different segmentation tasks, bridging the gap
between them and reducing the difficulty of multi-task learn-
ing for the model. Specifically, apart from the ‘[SEG]’ token,
we also introduce <p> and </p> tokens to the vocabulary
of the LMM to denote the start and end of the corresponding
phrases of the segmentation mask, respectively. The LLM is
required to mark the corresponding description with <p>
and </p> while activating the segmentation behavior us-
ing ‘[SEG]’. The following is an example of data format for

multi-referring segmentation:

User: <IMAGE> Please segment the {obj-1}, {obj-2},
..., and {obj-n} in this image.
Assistant: Sure, <p> {obj-1} </p> [SEG], <p> {obj-
2} </p> [SEG], ..., and <p> {obj-n} </p> [SEG].

Here,<IMAGE> denotes the placeholder for image tokens.
{obj-n} represents the semantic description of the corre-
sponding segmentation targets.

In contrast to previous work, such a unified data pattern
enables the model to explicitly learn the alignment rela-
tionships between the object concepts and the segmenta-
tion masks during training. Despite the fact that GLaMM
(Rasheed et al. 2024) had adopted a similar format, it was
only employed for the GCG task it presented. In con-
trast, we utilize this unified schema for all tasks, which re-
duces the modeling burden by minimizing the differences
in output formats across tasks. In Figure. 3, we demon-
strate our unified data format on tasks such as reasoning and
multi-granularity segmentation. Notably, during the training
phase, we convert the annotation format of some existing
open-source datasets into the proposed unified data schema
as they do not meet our requirements. For more details on
this process, please refer to Appendix. C.



R

1 8 10 11

9 32 4

6

Step-2 Mask Tree Building

8

10
9

Original Mask Annotation

Original Image

R

1 8 10 11

Root Tree :

Prompt: <Image> Well-Design Prompt

Root Input: <Root Children Node1 > short 
caption, detail caption: … , <Root Children 

Node8 > short caption, detail caption: … 

The result as follows:

<obj11> A woman standing on a surfboard 
</obj11> is the focal point of this image, 
balanced and poised as she propels herself 
forward with the paddle in hand. <obj10> The 
surfboard in the water </obj10> is a sturdy 
platform for her activity, its yellow hue 
stands out against the blue of the water, 
suggesting a leisurely venture rather than a 
competitive sport. <obj8> Holding a paddle 
firmly, the woman </obj8> demonstrates 
control and experience in this aquatic 
environment. <obj1> The water's blue color 

</obj1> stretches across the image, providing 
a serene backdrop to the scene and 
emphasizing the tranquil nature of the 
activity being enjoyed by the woman on the 
surfboard.

Step-1 Object Labeling

1: the water is blue

2: the hair is black in color

3: a woman bikini top

5: a wrist band on the woman wrist

4: the legs of a woman

6: ankle strap on surfboard

7: blue and yellow bikini bottoms

9: a white surfboard

8: a paddle holding by a woman

10:

Short Caption: 

Root Tree Annotation:

Subtree-11:

Prompt: <Image> Well-Design Prompt

Root Input: <Node11 Children Node3> short caption, detail 
caption: … , 

The result as follows:

In the image, <obj11> a woman standing on a surfboard 
</obj11> is captured as she paddles her way through the 
water. She is confidently managing the board, indicative 
of her experience or comfort in the activity. Notably, 
<obj5> a wrist band </obj5> can be seen on her wrist. She 

is secured to her board with <obj6> an ankle strap 
</obj6>, which is a safety feature commonly used in such 
water sports. The <obj2> woman’s hair </obj2> is 
described as black in color, it’s clear she has dark hair 
gathered up possibly to keep it out of her face while she 
enjoys the water. Her attire includes <obj7> blue and 
yellow bikini bottoms </obj7>, adding a splash of color 
to the scene. The vibrant bikini is further detailed with
<obj3>a woman's bikini top </obj3>, which is colorful and 
possibly bears a floral pattern, though the exact design 
might be difficult to discern. Lastly, <obj4> the legs of 
a woman </obj4> are shown, revealing her stance, which 

suggests a balance and focus necessary for the sport. 

Subtree-11 Annotation:

11: a woman standing on a surfboard

Step-3 Dense Context Organization Step-3 Dense Context Organization
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Figure 4: The overview of our proposed data auto-annotated pipeline. Due to space limitations, the detailed caption is not shown in the
figure. Please refer to the Appendix. B for the detailed version. Best viewed with zoom-in.

Data Annotation Pipeline
Most existing segmentation datasets focus on instance-level
objects, and although the SAM dataset provides fine-grained
segmentation mask annotations, it lacks corresponding text
descriptions. Therefore, to address the issue of insufficient
benchmarks for evaluating models in multi-granular seg-
mentation and captioning, we propose a novel task called
Multi-Granularity SegCap. To build up this benchmark, we
came up with an automated annotation pipeline that allows
us to leverage the capabilities of LMMs, specifically the
GPT-4 and Qwen-VL series, for data labeling. In the fol-
lowing section, we will introduce our automatic annotation
pipeline, designed to seamlessly transform any segmenta-
tion dataset. This pipeline consists of three main steps, as
illustrated in Figure 4. The first step focuses on generating
short captions and detailed captions for each masked target,
known as object labeling. Subsequently, the second step con-
structs tree relationships based on the segmentation masks.
The third step organizes various levels of granular informa-
tion by utilizing the raw data from different levels of the
subtree. As a result, we achieve multi-granularity segmenta-
tion and captioning annotations that demonstrate high align-
ment between visual and textual concepts. Since the SAM
(Kirillov et al. 2023) dataset provides hundreds of millions
of high-quality images and fine-grain segmentation, we per-
form our automated pipeline on the SAM dataset.

Object Labeling
In step 1, the key point is generating a short caption and
detailed caption for each target in the images. The short cap-
tion is used as a semantic representation of the target. The
detailed caption is a comprehensive and semantically rich
textual representation of the target, which is primarily used
to provide a reference representation to limit the divergence
and randomness of LMMs. In practice, we leverage the GPT-

4o to create instruction-following data to generate the se-
mantic label of each masked object.

Mask Tree Building
After obtaining the semantic labels of each target, we need
to organize the hierarchical relationships between each tar-
get within the image. We discover that the hierarchical rela-
tionships between the targets could be effectively reflected
by the Intersection of Union (IoU) relationships among the
masks. Therefore, we denote the entire image as the root
node and then extend the tree according to the inclusion re-
lationship between masks. Besides, in the SAM dataset, nu-
merous mask annotations exist within a single image, many
of which share the same semantics labels. For example, in
a building with many windows, each window is represented
as an individual mask with the same short captions. For such
nodes that share the same parent node, we merge the nodes
and their masks. In this manner, we obtain a simple and hi-
erarchical tree and significantly shorten the length of the re-
sulting text annotations.

Dense Context Organization
The generation of multi-granularity captions is based on the
mask tree which provides semantic labels of each target and
hierarchical relationships between them. First, we utilize the
semantic labels of child nodes of the root node to generate an
ordered text input which mainly includes the instance-level
objects in the image, which aims to create a coarse-grained
caption for the entire picture. Subsequently, we concatenate
the well-designed prompt, the ordered text input, and the im-
age to prompt GPT-4o and obtain an organized description
in which each target is embedded in a natural and coherent
sequence. We apply the same process on each subtree un-
der the root node. In particular, we use all the descendant



Method
Textual Response Mask Response Textual & Mask Response

Flickr30k NoCap refCOCO+ refCOCOg gRefCOCO reasonSeg GCG MGSC
CIDEr CIDEr cIoU cIoU cIoU cIoU CIDEr AP50 CIDEr AP50

LISA (Lai et al. 2024) – – 65.1 67.9 – 46.0 33.9 25.2 – –
PixelLM (Ren et al. 2024) – – 66.3 69.3 – – – – – –
GSVA (Xia et al. 2024) – – 65.9 72.7 – – – – – –
LaSagnA (Wei et al. 2024) – – 66.4 70.6 38.1 47.2 – – – –
PSALM (Zhang et al. 2024b) – – 72.9 73.8 42.0 – – – – –
OMG-LLaVA (Zhang et al. 2024a) – – 69.1 72.9 – – 41.2 29.9 – –
GLaMM (Rasheed et al. 2024) 95.3 106.8 72.6 74.2 – – 47.2 30.8 8.7 5.4

MGLMM (Ours) 104.6 112.6 73.9 77.2 52.8 51.1 50.1 31.7 11.6 7.4

Table 2: The comprehensive comparison of MGLMM and other LMMs in terms of text description and pixel-level understand-
ing capabilities. “–” indicates that the method does not handle this task.

nodes of the subtree to build up a description aiming to ob-
tain a fine-grained description of the specific target. Through
such a construction process, we obtain panoptic segmen-
tation masks with aligned descriptions for each instance-
level target, as well as fine-grained segmentation masks with
aligned descriptions for the specific target in each image.

In this manner, we annotate 10K SAM images, which are
inherently diverse and exhibit multi-granularity. The result-
ing dataset comprises 30K conversations and contains over
45M tokens, totaling more than 300K segmentation masks,
each accompanied by a short semantic label and a detailed
caption. For more details about the pipeline and dataset,
please refer to the Appendix. B.

Experiments
Experimental Settings

Datasets. To achieve all the capabilities of MGLMM, our
training dataset is composed of six parts: (1) semantic seg-
mentation: including ADE20K (Zhou et al. 2019), COCO-
Stuff (Caesar, Uijlings, and Ferrari 2018), Maplilary Vis-
tas (Neuhold et al. 2017), PACO-LVIS (Ramanathan et al.
2023), and PASCAL-Part (Chen et al. 2014) ; (2) referring
segmentation: including RefCLEF (Jing et al. 2021) the Re-
fCOCO series (Yu et al. 2016); (3) image-level caption: in-
cluding COCO Caption (Chen et al. 2015); (4) visual ques-
tion answering: including LLaVA-150k (Liu et al. 2024b)
(5) grounded conversation generation including GranDf.
Additionally, we also use approximately 4M captioning
and referring segmentation data from Grounding-anything
Dataset (GranD) 1 dataset published by GLaMM (Rasheed
et al. 2024), which is annotated automatically on SAM (Kir-
illov et al. 2023) images. (6) multi-granularity SegCap, in-
cluding MGSCData, which we proposed.
Implementation details. In our experiments, we use
Vicuna-7B as a structure for LLM except for some ablations.
We train our model on 16 Tesla A100 GPUs (80GB) for
30,000 iterations with a batch size of 16 per device. Unless
otherwise specified, the model is trained with a joint training
setting and without additional task-specific fine-tuning. Fol-
lowing the previous works, we apply the CE loss for mod-

1Although GranD contains 11M images, only 4M are available
because the authors have yet to publicize all the data.

eling text generation, and the BCE and DICE loss to super-
vise high-quality mask prediction. Further implementation
details, particularly regarding LORA fine-tuning, the opti-
mizer, hyperparameter settings, and training objectives, can
be found in the Appendix. D.

Model Multi-Granularity SepCap GCG
M C AP50 mIoU MR M C AP50 mIoU MR

Kosmos-2 – – – – – 16.1 27.6 17.1 55.6 28.3
LISA – – – – – 13.0 33.9 25.2 62.0 36.3
OMG-LLaVA – – – – – 14.9 41.2 29.9 65.5 –
GLaMM 16.5 8.7 5.4 47.6 18.7 16.2 47.2 30.8 66.3 41.8

MGLMM (Ours) 17.8 11.6 7.4 51.6 23.2 16.4 50.1 31.7 66.3 45.2

Table 3: Performance comparison on MGSC and GCG. Following
the evaluation protocol of GCG, we report the metrics including
METEOR (M), CIDEr (C), AP50, mIoU, and Mask Recall (MR).

Comparisons with State-of-the-Arts. As shown in Table 2,
we compare our MGLMM with other representative meth-
ods on various kinds of tasks and outperform all tasks. Then,
we evaluate the effectiveness of our MGLMM on the fol-
lowing six benchmarks. Additionally, we will provide more
discussion of the experimental results in the Appendix. E.
Multi-Granularity SegCap. The MGSC aims to evaluate
the ability to seamlessly adjust the granularity of segmenta-
tion and captioning. Following the same settings, we fine-
tune the GLaMM and our MGLMM on the training set
of MGSCData and evaluate them on the same metric. As
shown in Table 3, we outperform GLaMM on every metric,
demonstrating the impressive capabilities of our MGLMM
in multi-granularity SegCap.
Grounded Conversation Generation (GCG). Following
GLaMM, we finetune our model on the GranDf dataset.
As shown in Table 3, our MGLMM outperforms other ap-
proaches in terms of both image description and pixel un-
derstanding capabilities. It is worth noting that, despite more
training data utilized by GLaMM in the pre-training phase
compared to MGLMM, the latter still surpasses the former,
particularly in terms of the CIDEr and Mask Recall scores.
Referring Segmentation. Table 4 compares our MGLMM
with current state-of-the-art models on three representative
datasets. We achieve significant lead performances over re-
cent works like GLaMM, and OMG-LLaVG on the re-
fCOCO/+/g validation and test sets in Table 4. Notably,



Type Model refCOCO refCOCO+ refCOCOg ReasonSeg
val testA testB val testA testB val test cIoU gIoU

Segmentation
Specialist

LAVT (Yang et al. 2022) 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1 – –
ReLA (Liu et al. 2023a) 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0 – –
PolyFormer (Liu et al. 2023b) 74.8 76.6 71.1 67.6 72.9 59.3 67.8 69.1 – –

LMM-based
Models

LISA (Lai et al. 2024) 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6 46.0 34.1
PixelLM (Ren et al. 2024) 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5 – –
GSVA (Xia et al. 2024) 77.2 78.9 73.5 65.9 69.6 59.8 72.7 73.3 – –
LaSagnA (Wei et al. 2024) 76.8 78.7 73.8 66.4 70.6 60.1 70.6 71.9 47.2 –
OMG-LLaVA (Zhang et al. 2024a) 78.0 80.3 74.1 69.1 73.1 63.0 72.9 72.9 – –
GLaMM (Rasheed et al. 2024) 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9 – –

MGLMM (Ours)† 80.2 83.1 76.0 73.2 78.7 66.8 76.7 77.5 51.1 48.6
MGLMM (Ours) 81.3 83.5 77.3 73.9 79.2 67.2 77.2 77.4 – –

Table 4: Performance on referring and reasoning segmentation benchmarks. The table only shows the cIoU values for referring segmentation.
MGLMM† indicates that the referring segmentation dataset is used only in the pre-training phase.

Model zero
shot

Generalized Referring Segmentation
val testA testB

cIoU gIoU cIoU gIoU cIoU gIoU

ReLA (Liu et al. 2023a) 62.4 63.6 69.3 70.0 59.9 61.0
LISA†(Lai et al. 2024) 38.7 32.2 52.6 48.5 44.8 39.7
LISA (Lai et al. 2024) 61.7 61.6 69.2 70.1 60.3 61.3
GSVA†(Xia et al. 2024) 61.7 63.3 69.2 70.1 60.3 61.3
GSVA (Xia et al. 2024) 63.3 66.5 69.9 71.1 60.5 62.2

LaSagnA (Wei et al. 2024) 38.1 32.4 50.4 47.3 42.1 38.9
PSALM (Zhang et al. 2024b) 42.0 43.3 52.4 54.5 50.6 52.5
MGLMM (Ours) 52.8 50.2 61.2 58.7 56.0 54.1

Table 5: Performance comparison on generalized referring-
expression segmentation with cIoU and gIoU metrics. LISA† and
GSVA† exclusively use the gRefCOCO dataset during the pre-
training phase, while MGLLM performs zero-shot learning.

Model Flickr30k NoCap
CIDEr SPICE CIDEr SPICE

LEMON (Hu et al. 2022) – – 106.8 14.1
CoCa (Yu et al. 2022) – – 120.6 15.5
BLIP-2 (Li et al. 2023) – – 121.6 15.8
InstructBLIP (Dai et al. 2023) 82.8 – 123.1 –

Kosmos-1 (Huang et al. 2024) 67.1 14.5 – –
Kosmos-2 (Peng et al. 2023) 66.7 – – –
GLaMM (Rasheed et al. 2024) 95.3 18.8 106.8 15.8
MGLMM (Ours) 104.6 22.7 112.6 15.2

Table 6: Performance comparison on image-level captioning.

even without any fine-tuning on the referring segmentation
dataset (MGLMM† in Table 4), our approach still surpasses
GLaMM on the validation split of all benchmarks.

Generalized Referring Segmentation and Reasoning
Segmentation. The results are shown in Table 5. Com-
pared with PSLAM (Zhang et al. 2024b), the state-of-the-art
method in the zero-shot setting, our MGLMM accomplishes
average boosts of 6.0% and 6.5% in terms of cIoU and gIoU,
respectively. Notably, MGLMM even outperforms LISA†
in all cases, which incorporate gRefCOCO during the pre-
training phase. For reasoning segmentation, we utilize the
validation set of ReasonSeg dataset (Lai et al. 2024) as the
benchmark. From the results reported in Table 4, we can ob-
serve that the reasoning proficiency of MGLMM surpasses
that of other methods.

Image-level Captioning. To investigate this capability, we
finetune MGLMM on the Flickr-30K (Plummer et al. 2015)
and evaluate Flickr-30K and NoCap (Agrawal et al. 2019),
where the latter can be considered as a zero-shot scene. As
reported in Table 6, MGLMM is superior to the counterpart
model GLaMM on several metrics.

Model + USCDF + GranD
Dataset

refCOCO+ GCG
val testA testB C mIoU

MGLMM-7B 67.2 74.1 58.9 46.5 65.3
MGLMM-7B 69.9 76.2 62.5 46.3 65.6
MGLMM-7B 71.4 76.9 64.0 48.0 66.2
MGLMM-7B 73.2 78.7 66.8 50.1 66.3
MGLMM-13B 73.4 79.8 68.0 50.5 66.4

Table 7: Ablation study results. For refCOCO+, we utilize cIoU as
the metric. ‘C’ denotes the CIDEr score. We implement MGLMM-
13B using Llama2-13B as the structure for LLM.

Ablation Studies
To perform a thorough ablation study, we assess different
variants of MGLMM using two representative benchmarks,
i.e., referring segmentation and GCG, which can demon-
strate the models’ ability to understand pixel-level details
and provide image descriptions. For more details, please re-
fer to Appendix. E.
Effectiveness of USCDF. Compared to the 1st variant in Ta-
ble 7, MGLMM using USCDF obtains an improvement of
more than 2% on challenging regCOCO+ benchmark. The
performance difference between the 3rd and 4th variants is
significant, as GranD is four times larger than the other pre-
training data, which further amplifies the gains of USCDF.
Influence of GranD dataset. To investigate the impact of
the extra GranD dataset on MGLMM, we experiment with-
out 4M GranD samples. Comparing the 2nd and 4th variants
in Table 7, we can find that the GranD dataset contributes a
gain. Despite not utilizing GranD, our MGLMM remains su-
perior to models such as OMG-LLAVA in most cases, rank-
ing second only to GLaMM, which employed over ten times
training data during the pre-training phase.

Conclusion
We propose MGLMM, the first model capable of seam-
lessly adjusting the granularity of segmentation and cap-



tioning following user instructions. Realizing the lack of
multi-granularity of segmentation and captioning dataset
and benchmark, we introduce a novel benchmark MGSC-
Data to train and evaluate the ability of multi-granularity
segmentation and captioning for LMMs, which comprises
over 30K high-quality image-question pairs. To facilitate
aligning object concepts with visual features during various
segmentation tasks, we propose a unified data format. Our
model excels at tackling more than eight downstream tasks
and outperforms various benchmarks.
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